
DREAMING IN CODE: TWO DOZEN
PROGRAMMERS, THREE YEARS, 4,732

BUGS, AND ONE QUEST FOR
TRANSCENDENT SOFTWARE BY SCOTT

ROSENBERG

DOWNLOAD EBOOK : DREAMING IN CODE: TWO DOZEN PROGRAMMERS,
THREE YEARS, 4,732 BUGS, AND ONE QUEST FOR TRANSCENDENT

SOFTWARE BY SCOTT ROSENBERG PDF



http://bookpeace.com/site-ebook/1400082471


Click link bellow and free register to download ebook:
 DREAMING IN CODE: TWO DOZEN PROGRAMMERS, THREE YEARS, 4,732 BUGS, AND

ONE QUEST FOR TRANSCENDENT SOFTWARE BY SCOTT ROSENBERG

DOWNLOAD FROM OUR ONLINE LIBRARY

http://bookpeace.com/site-ebook/1400082471


DREAMING IN CODE: TWO DOZEN PROGRAMMERS,
THREE YEARS, 4,732 BUGS, AND ONE QUEST FOR

TRANSCENDENT SOFTWARE BY SCOTT ROSENBERG PDF

Well, still puzzled of the best ways to get this book Dreaming In Code: Two Dozen Programmers, Three
Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott Rosenberg right here without going
outside? Just connect your computer or gadget to the internet and also begin downloading and install
Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent
Software By Scott Rosenberg Where? This web page will reveal you the web link page to download
Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent
Software By Scott Rosenberg You never fret, your favourite book will certainly be earlier yours now. It will
certainly be a lot easier to enjoy reading Dreaming In Code: Two Dozen Programmers, Three Years, 4,732
Bugs, And One Quest For Transcendent Software By Scott Rosenberg by on the internet or getting the soft
data on your gizmo. It will despite that you are and just what you are. This publication Dreaming In Code:
Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott
Rosenberg is created for public and also you are just one of them who can take pleasure in reading of this
publication Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For
Transcendent Software By Scott Rosenberg

Amazon.com Review
In the 80s, Tracy Kidder's The Soul of a New Machine attempted to define the story of the development of a
minicomputer: from the new science to the business and nascent culture of electronic hardware and software
that was characteristic of that time. Scott Rosenberg's Dreaming in Code draws on Kidder's model as it
attempts to document the state of software, the Internet, and everything circa 2006 through the lens of
Chandler, an as-yet-unfinished software application for the management of personal information.

The Chandler project--driven by Mitch Kapor, the founder of Lotus Development and main designer of its 1-
2-3 spreadsheet, and later co-founder of the Electronic Frontier Foundation--isn't the primary point of
Dreaming in Code, though reading about software people and their social behavior is at least as interesting as
reading about that of meerkats or monkeys. Rather, Chandler is a rhetorical device with which Rosenberg
takes on the big questions: How do software development teams work (or not)? Why does the reuse of
software modules rarely work altogether correctly? Does open-source development by volunteers on the
Internet lead to innovation or just insanely bifurcated chaos? Chandler helps his readers think more clearly
about all of these issues; however, "answers" to these questions are, of course, not to be had, which is one of
his points.

The problem with books about technical subjects that aspire to appeal to a general audience, particularly
computers and software, is that such subjects are so far outside the realm of familiarity of most people that
the prose bogs down in analogy and metaphor. Rosenberg manages to avoid too much of that and deliver a
readable account of software development and culture. --David Wall



From Publishers Weekly
Software is easy to make, except when you want it to do something new," Rosenberg observes—but the
catch is that "the only software worth making is software that does something new." This two-tiered insight
comes from years of observing a team led by Mitch Kapor (the creator of the Lotus 1-2-3 spreadsheet) in its
efforts to create a "personal information manager" that can handle to-do lists as easily as events scheduling
and address books. Rosenberg's fly-on-the-wall reporting deftly charts the course taken by Kapor's Open
Source Applications Foundation, while acknowledging that every software programmer finds his or her own
unique path to a brick wall in the development process. (The software is still in development even now.)
With equal enthusiasm, Rosenberg digs into the history of the computer industry's efforts to make
programming a more efficient process. Though there's a lot of technical information, it's presented in very
accessible terms, primarily through the context of project management. Even readers whose computer
expertise ends at retrieving their e-mail will be able to enjoy digressions into arcane subjects like object-
oriented programming. (Jan.)
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.

From Booklist
Programmers practice a most abstract and incomprehensible art; yet, as end users, we take them for granted
and demand perfection from the software they create. Rosenberg, a theater and movie critic turned
technology columnist and founder of the Web magazine Salon.com,^B attempts to shed light on the day-to-
day realities of what turns out to be a Herculean task: getting computers to do what we want them to. He
spent three years following the course of development of a software program code named Chandler, a
combination calendar, to-do list, e-mail manager, and personal database. This open-source project was the
dream child of Mitch Kapor, the creator of Lotus 1-2-3, who envisioned a simple, elegant interface capable
of easy storage and retrieval of any number of personal data. The practical matter of creation was another
story, however, and we learn how the fits and starts of software engineering make even creating a "simple"
program an arduous task. Although this is not edge-of-your-seat stuff, it is highly instructive for anyone
planning on "managing" a software project. David Siegfried
Copyright © American Library Association. All rights reserved



DREAMING IN CODE: TWO DOZEN PROGRAMMERS,
THREE YEARS, 4,732 BUGS, AND ONE QUEST FOR

TRANSCENDENT SOFTWARE BY SCOTT ROSENBERG PDF

Download: DREAMING IN CODE: TWO DOZEN PROGRAMMERS, THREE YEARS, 4,732 BUGS,
AND ONE QUEST FOR TRANSCENDENT SOFTWARE BY SCOTT ROSENBERG PDF

Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For
Transcendent Software By Scott Rosenberg When writing can transform your life, when composing can
enhance you by offering much cash, why don't you try it? Are you still very baffled of where understanding?
Do you still have no concept with what you are visiting create? Now, you will certainly require reading
Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent
Software By Scott Rosenberg An excellent author is an excellent reader simultaneously. You can specify just
how you write relying on exactly what publications to review. This Dreaming In Code: Two Dozen
Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott Rosenberg
could assist you to fix the issue. It can be one of the right sources to create your composing skill.

As one of the window to open up the new world, this Dreaming In Code: Two Dozen Programmers, Three
Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott Rosenberg supplies its outstanding
writing from the author. Published in one of the preferred authors, this book Dreaming In Code: Two Dozen
Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott Rosenberg
turneds into one of one of the most desired books recently. In fact, the book will certainly not matter if that
Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent
Software By Scott Rosenberg is a best seller or otherwise. Every publication will still give finest sources to
get the user all finest.

However, some people will certainly seek for the best seller publication to check out as the initial reference.
This is why; this Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest
For Transcendent Software By Scott Rosenberg is presented to satisfy your necessity. Some individuals like
reading this book Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest
For Transcendent Software By Scott Rosenberg because of this prominent book, however some love this as a
result of preferred author. Or, numerous additionally like reading this publication Dreaming In Code: Two
Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott
Rosenberg since they truly have to read this publication. It can be the one that really like reading.

http://bookpeace.com/site-ebook/1400082471
http://bookpeace.com/site-ebook/1400082471


DREAMING IN CODE: TWO DOZEN PROGRAMMERS,
THREE YEARS, 4,732 BUGS, AND ONE QUEST FOR

TRANSCENDENT SOFTWARE BY SCOTT ROSENBERG PDF

Our civilization runs on software. Yet the art of creating it continues to be a dark mystery, even to the
experts. To find out why it’s so hard to bend computers to our will, Scott Rosenberg spent three years
following a team of maverick software developers—led by Lotus 1-2-3 creator Mitch Kapor—designing a
novel personal information manager meant to challenge market leader Microsoft Outlook. Their story takes
us through a maze of abrupt
dead ends and exhilarating breakthroughs as they wrestle not only with the abstraction of code, but with the
unpredictability of human behavior— especially their own.

Sales Rank: #262521 in Books●

Brand: Three Rivers Press●

Model: 3626272●

Published on: 2008-02-26●

Released on: 2008-02-26●

Original language: English●

Number of items: 1●

Dimensions: 8.00" h x .90" w x 5.20" l, .66 pounds●

Binding: Paperback●

416 pages●

Features

Great product!●

Amazon.com Review
In the 80s, Tracy Kidder's The Soul of a New Machine attempted to define the story of the development of a
minicomputer: from the new science to the business and nascent culture of electronic hardware and software
that was characteristic of that time. Scott Rosenberg's Dreaming in Code draws on Kidder's model as it
attempts to document the state of software, the Internet, and everything circa 2006 through the lens of
Chandler, an as-yet-unfinished software application for the management of personal information.

The Chandler project--driven by Mitch Kapor, the founder of Lotus Development and main designer of its 1-
2-3 spreadsheet, and later co-founder of the Electronic Frontier Foundation--isn't the primary point of
Dreaming in Code, though reading about software people and their social behavior is at least as interesting as
reading about that of meerkats or monkeys. Rather, Chandler is a rhetorical device with which Rosenberg
takes on the big questions: How do software development teams work (or not)? Why does the reuse of
software modules rarely work altogether correctly? Does open-source development by volunteers on the
Internet lead to innovation or just insanely bifurcated chaos? Chandler helps his readers think more clearly
about all of these issues; however, "answers" to these questions are, of course, not to be had, which is one of
his points.



The problem with books about technical subjects that aspire to appeal to a general audience, particularly
computers and software, is that such subjects are so far outside the realm of familiarity of most people that
the prose bogs down in analogy and metaphor. Rosenberg manages to avoid too much of that and deliver a
readable account of software development and culture. --David Wall

From Publishers Weekly
Software is easy to make, except when you want it to do something new," Rosenberg observes—but the
catch is that "the only software worth making is software that does something new." This two-tiered insight
comes from years of observing a team led by Mitch Kapor (the creator of the Lotus 1-2-3 spreadsheet) in its
efforts to create a "personal information manager" that can handle to-do lists as easily as events scheduling
and address books. Rosenberg's fly-on-the-wall reporting deftly charts the course taken by Kapor's Open
Source Applications Foundation, while acknowledging that every software programmer finds his or her own
unique path to a brick wall in the development process. (The software is still in development even now.)
With equal enthusiasm, Rosenberg digs into the history of the computer industry's efforts to make
programming a more efficient process. Though there's a lot of technical information, it's presented in very
accessible terms, primarily through the context of project management. Even readers whose computer
expertise ends at retrieving their e-mail will be able to enjoy digressions into arcane subjects like object-
oriented programming. (Jan.)
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.

From Booklist
Programmers practice a most abstract and incomprehensible art; yet, as end users, we take them for granted
and demand perfection from the software they create. Rosenberg, a theater and movie critic turned
technology columnist and founder of the Web magazine Salon.com,^B attempts to shed light on the day-to-
day realities of what turns out to be a Herculean task: getting computers to do what we want them to. He
spent three years following the course of development of a software program code named Chandler, a
combination calendar, to-do list, e-mail manager, and personal database. This open-source project was the
dream child of Mitch Kapor, the creator of Lotus 1-2-3, who envisioned a simple, elegant interface capable
of easy storage and retrieval of any number of personal data. The practical matter of creation was another
story, however, and we learn how the fits and starts of software engineering make even creating a "simple"
program an arduous task. Although this is not edge-of-your-seat stuff, it is highly instructive for anyone
planning on "managing" a software project. David Siegfried
Copyright © American Library Association. All rights reserved

Most helpful customer reviews

73 of 73 people found the following review helpful.
All Too Familiar
By Andrew Otwell
If you're in software development in any capacity, you'll find almost everything in this book is depressingly
familiar: schedules dragging on endlessly, vague ideas standing for clear feature descriptions, and a
remarkable lack of interest in learning from the past. You meet the indecisive manager, the frustrated
designer, and the cowboy coder (the one who loses interest in things as soon as they finally work, determined
to gut and rewrite thousands of lines of code for the sake of incremental "elegance").

"Dreaming in Code" really isn't a description of the act of programming, it's more about the difficulty of
designing software with other people. It's not at all like designing, say, a new car, where real-world
constraints (like the laws of physics and the behavior of materials) come into play. In software, nearly
anything is possible. Unfortunately, or a "what comes out of that isn't usually the thrill of possibility, but the
paralysis of choice. And that's what Rosenberg captures so well here: the endless, endless meetings



discussing what *could* be done, how features *might* work, or what sorts of things "users" *might* want.
And it is always that nebulous term "the user" here, the Chandler project never seems to bother thinking
much about exactly who will use their product, under what circumstances.

It's not giving anything away to mention that the Chandler project doesn't end at the end of the book.
Amazingly, the project is *still* grinding away after four years, releasing incremental versions of their
calendar application (each loudly proclaiming that it's an "experimentally usable version"), even as they get
passed by on a regular basis by new, fully-usable, web-based calendars like the one from Google.

It's not exactly a fun read--it is essentially a case study of a very long series of meetings--but it should be
required reading for anyone involved in software development.

46 of 49 people found the following review helpful.
recommended for non programmers
By Steve Johnson
Ansel Adams wrote, "There is nothing worse than a sharp image of a fuzzy concept." And such is the case
with the Chandler project. After four years of development, they have delivered only a 0.6 release with no
general availability in sight.

In Dreaming in Code, author Scott Rosenberg follows a group of programmers tasked with creating a new
product over a three-year stint. Along the way the book explores disciplines in development (and the lack
of), the history of computing (particularly its truths and folklore), and explains why software engineering
isn't a science but an art. A common misconception even among developers is that software is similar to
construction when, as becomes clear in the book, developing software is more like cooking. Programming
methodologies are as plentiful as cookbooks but both are limited by the realities of artistry. A chef can make
miracles from a pantry full of ingredients; a cook cannot.

If you're involved with a development team as a marketer, there is much here that will illuminate your team's
dysfunction. Rosenberg reintroduces us to concepts that have been known since The Mythical Man Month
and The Soul of a New Machine but apparently not understood, remembered, or believed. Strongly
recommended.

118 of 133 people found the following review helpful.
Good writing, hobbled by bad choice of project
By Yaron
Santa came through this year with a slightly advance copy of "Dreaming in Code", which tries to do for
software engineering what "The Soul of a New Machine" did for computer engineering, following a single
project through to its attempted conclusion. Software development is a story that's very rarely told,
considering how dramatically software has changed all of our lives in the last 30 years. Author Scott
Rosenberg does a good job of conveying the difficulties in software engineering, and the inevitable
headaches and drama that come with incomplete plans and shifting specs (and they're always incomplete and
shifting).

Where Rosenberg went wrong, unfortunately, is his choice of project to follow. Mitch Kapor's Chandler is
quite atypical of software projects: it's driven entirely by one man's quixotic vision, and never has to
encounter the usual give-and-take with VC's or upper management that help to clarify a plan. Kapor comes
off as an untethered idealist (Al Gore makes the obligatory cameo at the office), and his project is afflicted
by the same we-are-the-world unseriousness as his politics. Most notably, Kapor decides there should be no
central repository for data (because, hey, down with authority and all that): instead, every item will just be
represented, Napster-style, across users' personal computers. It's a costly decision that I don't think would



have been made if it were more than just Kapor running the show.

Actually, I think the strongest part of the book is when Rosenberg abandons the project entirely in the middle
section to delve into the history of the programming discipline, noting everyone from Donald Knuth to
37signals' Jason Fried. It's a useful, lucid introduction to the field that contains stories I hadn't seen before.

To pick some nits, there are errors that betray Rosenberg as an outsider. "Foo" and "bar", for instance,
usually aren't stand-ins for variable names, they're stand-ins for *values*; variable names are decided on
almost immediately once the need for one becomes known. [UPDATE: this caused some controversy in the
comments. It's true that "foo" and "bar" can also represent variables, but I still contend that it's only in
theoretical discussions, when nothing is known about those variables. The book (p. 196) calls them
"placeholders" during real-life coding, which I don't think is often true. FURTHER UPDATE, AFTER
MORE COMMENTS: Okay, okay, I guess I was wrong. You guys win!] Rosenberg also, I think, makes too
big a deal of software's need for precise language: many other engineering fields, and the legal profession,
require precise writing, with small errors potentially leading to catastrophe. Rosenberg also overreaches
when trying his hand at software philosophy, declaring "The only software worth making is software that
does something new" (tell that to the OpenOffice people).

All that aside, this is an entertaining book with some interesting insights, and it would be a great read for
anyone who's thinking of going into programming - hopefully it won't scare them off.

See all 101 customer reviews...



DREAMING IN CODE: TWO DOZEN PROGRAMMERS,
THREE YEARS, 4,732 BUGS, AND ONE QUEST FOR

TRANSCENDENT SOFTWARE BY SCOTT ROSENBERG PDF

In getting this Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest
For Transcendent Software By Scott Rosenberg, you could not still go by strolling or using your electric
motors to guide stores. Get the queuing, under the rainfall or hot light, as well as still look for the
unidentified publication to be during that publication store. By visiting this page, you could just search for
the Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For
Transcendent Software By Scott Rosenberg as well as you could find it. So currently, this time around is for
you to go with the download link and acquisition Dreaming In Code: Two Dozen Programmers, Three
Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott Rosenberg as your personal soft
data book. You could read this publication Dreaming In Code: Two Dozen Programmers, Three Years, 4,732
Bugs, And One Quest For Transcendent Software By Scott Rosenberg in soft file only and save it as your
own. So, you don't need to fast place guide Dreaming In Code: Two Dozen Programmers, Three Years,
4,732 Bugs, And One Quest For Transcendent Software By Scott Rosenberg right into your bag all over.

Amazon.com Review
In the 80s, Tracy Kidder's The Soul of a New Machine attempted to define the story of the development of a
minicomputer: from the new science to the business and nascent culture of electronic hardware and software
that was characteristic of that time. Scott Rosenberg's Dreaming in Code draws on Kidder's model as it
attempts to document the state of software, the Internet, and everything circa 2006 through the lens of
Chandler, an as-yet-unfinished software application for the management of personal information.

The Chandler project--driven by Mitch Kapor, the founder of Lotus Development and main designer of its 1-
2-3 spreadsheet, and later co-founder of the Electronic Frontier Foundation--isn't the primary point of
Dreaming in Code, though reading about software people and their social behavior is at least as interesting as
reading about that of meerkats or monkeys. Rather, Chandler is a rhetorical device with which Rosenberg
takes on the big questions: How do software development teams work (or not)? Why does the reuse of
software modules rarely work altogether correctly? Does open-source development by volunteers on the
Internet lead to innovation or just insanely bifurcated chaos? Chandler helps his readers think more clearly
about all of these issues; however, "answers" to these questions are, of course, not to be had, which is one of
his points.

The problem with books about technical subjects that aspire to appeal to a general audience, particularly
computers and software, is that such subjects are so far outside the realm of familiarity of most people that
the prose bogs down in analogy and metaphor. Rosenberg manages to avoid too much of that and deliver a
readable account of software development and culture. --David Wall

From Publishers Weekly
Software is easy to make, except when you want it to do something new," Rosenberg observes—but the
catch is that "the only software worth making is software that does something new." This two-tiered insight
comes from years of observing a team led by Mitch Kapor (the creator of the Lotus 1-2-3 spreadsheet) in its
efforts to create a "personal information manager" that can handle to-do lists as easily as events scheduling
and address books. Rosenberg's fly-on-the-wall reporting deftly charts the course taken by Kapor's Open



Source Applications Foundation, while acknowledging that every software programmer finds his or her own
unique path to a brick wall in the development process. (The software is still in development even now.)
With equal enthusiasm, Rosenberg digs into the history of the computer industry's efforts to make
programming a more efficient process. Though there's a lot of technical information, it's presented in very
accessible terms, primarily through the context of project management. Even readers whose computer
expertise ends at retrieving their e-mail will be able to enjoy digressions into arcane subjects like object-
oriented programming. (Jan.)
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.

From Booklist
Programmers practice a most abstract and incomprehensible art; yet, as end users, we take them for granted
and demand perfection from the software they create. Rosenberg, a theater and movie critic turned
technology columnist and founder of the Web magazine Salon.com,^B attempts to shed light on the day-to-
day realities of what turns out to be a Herculean task: getting computers to do what we want them to. He
spent three years following the course of development of a software program code named Chandler, a
combination calendar, to-do list, e-mail manager, and personal database. This open-source project was the
dream child of Mitch Kapor, the creator of Lotus 1-2-3, who envisioned a simple, elegant interface capable
of easy storage and retrieval of any number of personal data. The practical matter of creation was another
story, however, and we learn how the fits and starts of software engineering make even creating a "simple"
program an arduous task. Although this is not edge-of-your-seat stuff, it is highly instructive for anyone
planning on "managing" a software project. David Siegfried
Copyright © American Library Association. All rights reserved

Well, still puzzled of the best ways to get this book Dreaming In Code: Two Dozen Programmers, Three
Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott Rosenberg right here without going
outside? Just connect your computer or gadget to the internet and also begin downloading and install
Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent
Software By Scott Rosenberg Where? This web page will reveal you the web link page to download
Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent
Software By Scott Rosenberg You never fret, your favourite book will certainly be earlier yours now. It will
certainly be a lot easier to enjoy reading Dreaming In Code: Two Dozen Programmers, Three Years, 4,732
Bugs, And One Quest For Transcendent Software By Scott Rosenberg by on the internet or getting the soft
data on your gizmo. It will despite that you are and just what you are. This publication Dreaming In Code:
Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For Transcendent Software By Scott
Rosenberg is created for public and also you are just one of them who can take pleasure in reading of this
publication Dreaming In Code: Two Dozen Programmers, Three Years, 4,732 Bugs, And One Quest For
Transcendent Software By Scott Rosenberg


